SQA-Vt

New technology for increasing profits in the turkey industry

Advantages of using the SQA-Vt

- Accurate and reliable test results
- Easy to use and cost effective
- Consistent and standardized dose preparation
- Maximize # and quality of AI doses
- Flock optimization
- Comprehensive flock management

ADVANTAGES to using the SQA-Vt

- FERTILITY: Use of the SQA-Vt can decrease the number of males used in the donor pool while maintaining the same fertility rates
- **QUALITY CONTROL:** The impact of such factors as age, disease, extenders and sperm collection and handling techniques have on fertility can be easily measured

The VALUE of using the SQA-Vt

- Optimal use of sperm from males with favorable genetic traits insures offspring with similar traits
 - High weight males = High weight offspring
 - Increased body weight = Increased income of 100,000 Euro per million males
- Removal of non-productive males from the donor pool
 - Decrease in parent stock = Savings of 30,000 Euro as a result of decreased maintenance (feeding) expenses

Objectives of this presentation

- Present a general overview of the SQA-Vt and its technology
- Provide clinical evidence to prove the efficacy and positive impact of the SQA-Vt
- Present an economic cost/benefit model

Advancements in Turkey Artificial Insemination

- AI is used 100% in the turkey industry
- Systems for filling straws have improved
- Sperm extenders preserve sperm for longer periods of time
- Improved filters are used for sperm collection
- New guidelines established for AI are focused on both the quantity of sperm required and the frequency of insemination
- Currently there is no QC methods in place for testing turkey sperm on an industrial scale

Innovations in other industries for comparison

• Bull (dairy)

- Al is conducted with a routine QC program in place
- Straws are prepared for AI with a standard number of sperm cells in a standard dose quantity
- Bull (Breeding Soundness)
 - Males with high fertility potential are identified and selected
- Boars
 - Al is routine with fresh or cooled semen
 - QC is conducted on samples prepared for AI
 - Straws are prepared for AI with a standard number of sperm cells in a standard dose quantity

Results of standardized dose preparation and QC

WHEN.....

• The QUALITY of the sperm goes UP

The NUMBER of sperm cells
per dose goes DOWN

• STANDARDIZATION + QC = INCREASED \$ PROFITS

What does the turkey industry require?

- Profitability in the poultry industry is based on high throughput
- To effectively introduce sperm quality testing the procedure must be:
 - Cost effective
 - Fast with no extra burden on the employees
 - Simple and user friendly
 - Reliable results should be repeatable and accurate
 - Easy and adaptable to field conditions

The SQA-Vt

- Fast and simple to use results within 45 seconds
- Reliable high repeatability and accuracy
- Test results include both sperm concentration and motility
- Visualization system
- T-Sperm Software for flock and data management
- Auto-calibrating
- PC compatible

SQA-Vt Automated Testing/Dosing

SQA-Vt	Semen	Analysis	Parameters	

Total Sperm Concentration	TSC (Bill/ml)		
% Motility	%		
Motile Sperm Concentration	MSC (Bill/ml)		
Total Sperm			
Total Motile Sperm			
SQA-Vt Dosing Parameters			
Number of doses in the pool	#		
Total Volume	ml		
Extender Volume	ml		

SQA-Vt Product Performance Data:

SQA-VT	TSC	MSC	Motility%
Intra Device Variability	3.69	4.99	5.41
Inter Device Variability	1.5	4.55	5.64

TSC:

MSC:

Dynamic Range:		
TSC:	0-20 Bill/MI	
MSC:	0-20 Bill/MI	
Motility:	0-100%	

Precision	(CVs):	Accura	acy:
TSC:	4.0%	TSC:	0.90
MSC:	5.5%	MSC:	0.90
Motility:	6.0%	Motility:	0.90

Sperm Concentration: Correlation to the microscope (automated vs. manual method)

SQA-Vt Product Performance Data

Optimize Production at Turkey Breeding Facilities

- Sort males to optimize offspring's
 - Weight
 - Genetic traits
- Increased body weight of offspring
 - Increased productivity
 - Economic gain

Impact of the Selection Process

Selection Response in Parent Stock Males

SQA-Vt: Economic Model for Improved Weight Gain in a Mixed Farm (males + females)

- Current selection process (Top 50%) results in a weight gain of 250g per male
- SQA-Vt improved selection process (Top 40%) results in:
 - A weight gain of 310g per male an improvement of 60g per male over the current selection process
 - 1.0 million males would gain 60,000kg (60 tons) overall
 - The breast accounts for 25% of the bird's weight. The increased profit attributable to breast weight: 60,000kg X 25% X 2.4€/kg = 36,000€
 - Increased profit attributable to the remaining weight gain: 60,000 x 75% x 1.5€ = 67,500 €
 - Total profits are increased by 103,500€ per 1.0 million males slaughtered

SQA-Vt: Economic Model for Improved Weight Gain in a Mixed Farm (males + females)

- Reducing the male to female ratio of the parent stock from 7% males to 5% males (which constitutes a 20% reduction in the number of males), results in savings of approximately 29,400€ per 1.0 million males slaughtered
- Ramit Farms currently needs 3,500 parent stock males to produce 1.0 million males for slaughter
- A 20% reduction in the male parent stock (700 males at 42€/male) results in savings of 29,400€ as noted above.

The question is then raised – *How to successfully inseminate the same number of females using the heavier males?*

Use of the SQA-Vt at Cuddy Farms, USA

Biological Variability of Sperm in a Commercial Turkey Farm

Sample Reference#

Biological Variability of Sperm in a Commercial Turkey Farm

Percent of Pools Tested

Biological Variability of Sperm in a Commercial Turkey Farm

Percent of Pools Tested

Clinical Trial: Testing the SQA-Vt Economic Model for Improved Weight Gain

The following data is from trials conducted at Ramit Farms – PHASE I (SORTING MALES)

• Description of the trial:

- 135 males were tested to classify them as producers of high or low quality sperm
- Two examinations took place on the same males: The first at 28 weeks before the flock insemination, the second at the end of the flock insemination cycle
- Semen 'pools' from each group were checked weekly

Results of PHASE I Ramit Farms Trial:

- The SQA-Vt technology can be used successfully to sort males at an early stage into two groups based on their semen quality
- Sorting groups of males by sperm quality demonstrates this is an effective way to predict and monitor their future fertility
 - Males with poor semen quality tended to produce poor quality throughout the insemination cycle
 - These results agree with a similar study conducted in Maryland in 1998

Ramit Study: Sperm Motility from Two Groups of Males

PHASE I of the clinical study performed at Ramit Corporation

showing sperm % motility over a timeline of 81 days from two groups of males classified as HIGH and LOW quality sperm producers at the beginning of the study.

Clinical Trial: Testing the Economic Model for Improved Weight Gain

- The following data is from trials conducted at Ramit Farms – PHASE 2: Insemination of Females w/SQA-Vt prepared semen vs. current manual method)
- Description of the trial:
 - Two groups of females (1,100 in each group) were inseminated based on two protocols
 - Ramit Protocol: Fixed 1:1 dilution of semen
 - SQA-Vt Protocol: Fixed # cells per semen dose (140 million live cells
 - The trial was conducted over the entire insemination cycle
 - The semen and fertility parameters of the two groups were identical prior to conducting the trial

Clinical Trial: Testing the Economic Model for Improved Weight Gain

Results of PHASE 2 Ramit Trial:

- 22% less semen was used in the SQA-Vt group vs. Ramit control group
- 12% less males were used in the SQA-Vt group they were eliminated at the beginning of the trial because of their low quality semen
- Even though the SQA-Vt group had less males (12% less), no semen shortage was experienced
- SQA-Vt Fertility Results: 1.8% improved over Ramit control group

Conclusion:

- It is possible to use significantly less semen (22% less) and less males (12%) and still obtain improved fertility (1.8%) using the SQA-Vt technology.
- It can be further concluded that it is possible to increase selection pressure in the same way by using heavier weight males.

Economic Model Summary: Based on improved selection pressure from 50% to 40%

Income/Expense: Based on 1.0 Million slaughtered Males	Price in Euros
Contribution based on the price of breast meat	45,000
Contribution based on the price of red meat	84,000
Reduction in the cost of maintaining males	29,600
Total Income	158,600
Expenses	
7% Depreciation for 10 SQA-Vt systems @19,500 Euro per system for 6 months	13,650
Tests – based on 10,000 tests	10,000
Total expenses	23,650
Net profit	134,950
Net return on investment	1:6

Using the SQA-Vt to Compare Semen Extenders

→ Neat → Extender → Extender+H20 → 0.9%NaCl

SUMMARY / CONCLUSIONS

- Fact #1: There is a large biological variability between males (fertility)
- Fact #2: There is a large biological variability between insemination doses prepared based on current protocols
- The SQA-Vt can positively impact costs and fertility by optimizing the insemination process based on:
 - Increasing the weight of the next generation by selecting semen from high quality males and eliminating poor semen quality males
 - Reducing the # males by 20% (and reducing their maintenance costs) without impacting fertility or suffering shortages of sperm
 - Measuring the impact of age, disease, extenders and sperm collection and handling techniques on fertility

Advantages of using the SQA-Vt.....

- Accurate and reliable test results
- Easy to use and cost effective
- Consistent and standardized dose preparation
- Maximize # and quality of AI doses
- Flock optimization
- Comprehensive flock management

SQA-Vt

New technology for increasing profits in the turkey industry

